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Zero-Point Energy of Quantum Fields
in a Schwarzschild Geometry

Karsten Bormann1,3 and Frank Antonsen2

The effective Lagrangian and the zero-point (or Casimir) energy is calculated from
the zeta-function which is obtained by the heat kernel method using the expansion of
(Bormann and Antonsen, 1995). Calculated this way this unavoidable energy contribu-
tion is automatically regularised and ready for further investigation. Interesting obser-
vations include a large energy contribution (from scalar field and fermionic zero-point
fluctuations) that is non-zero as the mass goes to zero, perhaps indicating a topological
origin. Also, plots of the contribution of gauge boson fields to the zero-point energy,
as a function of radial distance (gravitational field strength) and the size of the gauge
boson coupling (gauge field strength) shows great variation, notably the occurrence of
‘resonances.’

KEY WORDS: zero-point energy in curved space scalars; fermions; gauge fields
Schwarzschild geometry.

1. INTRODUCTION

Under investigation is the influence of the gravitational field, in this case given
by the Schwarzschild metric which line element is given by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2 dθ2 − r2 sin2 θ dφ2 (1)

where M is the mass of the (classical) object generating the Schwarzschild ge-
ometry, on the quantum fluctuations and conversely, the influence of the quantum
fluctuations on the gravitational field (back-reaction). The theoretical setting is that
of quantum matter fields in a gravitational background field (first quantisation).

The Casimir effect is of course unavoidable so the simplest possible action
is SEinstein + Smatter, where ‘matter’ comprises all known quantum fields (except
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gravitation), which leads to the Einstein equations

Gµν = Rµν − 1

2
gµν R = 〈Tµν〉Casimir

zero + T classical
µν (2)

where units are chosen such that κ = h = c = 1.

In a Schwarzschild space–time T classical
µν vanishes everywhere except at the

origin and we are left with determining 〈Tµν〉Casimir, the zero-point energy of the
matter fields.

The components of the Casimir energy–momentum tensor (for a given matter
field in a given gravitational background) can be determined from the effective
action by taking the functional derivative with respect to the inverse metric

〈Tµν〉Casimir = δ	eff

δgµν
(3)

The effective action (and the effective Lagrangian, Leff) in turn is determined
from a path integral. If the functional integral is Gaussian it can be performed,
determining the determinant of the operator, A, related to the quantum field.4

Z = e	eff = e
∫ √−gd4xLeff ≡

∫
ei SDφ =

∫
ei

∫ √−gd4xφ Aφ Dφ = (det(A))p (4)

where g is the metric determinant and where φ is a generic matter field and where
p = − 1

2 for a real scalar field, p = 1 for a spin 1/2 fermion field, i.e. a complex
Grassman field (p = 1

2 for a real Grassman field) and p = −1 for a massless
spin 1 gauge boson field. The determinant, in turn, can be determined from the
zeta-function, ζA(s) by the relation

− ln det(A) = dζA

ds
|s=0, ζA(S) ≡ 1

	(s)

∫
dσ σ s−1

∫
G A(x , x ; σ )

√
gd4x (5)

where the heat kernel, G A(x , x̃ ; σ ), is the function solving the (heat kernel) equation

AG A(x , x̃ ; σ ) = − ∂

∂σ
G A(x , x̃ ; σ ) (6)

subject to the boundary condition G A(x , x̃ ; 0) = δ(x − x̃). In case that the heat
kernel is spinor or tensor valued (as it is in the spin 1/2 and spin 1 cases, respectively)
one also has to take the trace when determining the effective action or Lagrangian.
The heat kernel is then determined by the method developed in (Bormann and
Antonsen, 1995) the steps of which we will go through explicitly (for the case of
a Schwarzschild metric) in sections 1–3. In section 4 a conclusion and outlook is
given.

4 The relations presented in this introduction are discussed in detail in for instance (Bormann and
Antonsen, 1995).
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2. THE ZERO-POINT CONTRIBUTION TO THE EFFECTIVE ACTION
OF A SCALAR FIELD FOR THE SCHWARZSCHILD METRIC

The scalar field operator is given by

� + m2 + ξ R = 1√−g
∂µ(gµν

√−g∂ν) + m2 + ξ R

= gµν∂u∂ν + 1√−g
(∂µ

√−g)gµν∂ν + (∂µgµν)∂ν + m2 + ξ R

= gµν∂µ∂ν + [
∂µgµν + gµν	α

µα

]
∂ν + m2 + ξ R (7)

where � is the curved space d’Alembertian, 	α
µα a contracted Christoffel symbol

and R the curvature scalar. The covariant derivative of the metric vanishes;

Dαgµν = ∂αg∂ν + 	
µ
δαgδν + 	ν

δαgµδ ≡ 0 (8)

Contracting α and µ, one can use this equation to simplify the scalar field operator,
obtaining

� + m2 + ξ R = gµν∂µ∂ν − gµα	ν
αµ∂ν + m2 + ξ R (9)

Written explicitly, for the case of a Schwarzschild metric, the operator becomes

� + m2 + ξ R = 1

1 − 2M
r

∂2
t −

(
1 − 2M

r

)
∂2

r − 2r − 2M

r2
∂r − 1

r2
∂2
θ − cot(θ )

r2
∂θ

− 1

r2 sin2(θ )
∂2
φ + m2 + ξ R

≡ 1

1 − 2M
r

∂2
t −

(
1 − 2M

r

)
∂2

r − 2r − 2M

r2
∂r − L2

r2
+ m2 + ξ R

(10)

where the angular momentum operator squared, L2, has been introduced. Now
change to new coordinates defined by

t ′ =
√

1 − 2M

r
t

r ′ =
√

r2 − 2Mr + M ln(
√

r2 − 2Mr + r − M) (11)

giving the derivatives

∂2
t = ∂2t ′

∂t2
∂t ′ +

(
∂t ′

∂t

)2

∂2
t ′ =

(
1 − 2M

r

)
∂2

t ′ ∂r = ∂r ′

∂r
∂r ′ = 1√

1 − 2M
r

∂r ′
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∂2
r = ∂2r ′

∂r2
∂r ′ +

(
∂r ′

∂r

)2

∂2
r ′ = ∂r


 1√

1 − 2M
r


 ∂r ′ + 1

1 − 2M
r

∂2
r ′ (12)

so that the scalar field operator becomes

� + m2 + ξ R = ∂2
t ′ − ∂2

r ′ + −2r + 3M

r2
√

1 − 2M
r2

∂r ′ − L2

r2
+ m2 + ξ R (13)

Write the corresponding heat kernel equation as[
∂2

t ′ − ∂2
r ′ + g(r (r ′))∂r ′ − L2

r2
+ m2 + ξ R

]
G = −∂σ G (14)

where the coefficient of the first-order derivative is given by

g(r (r ′)) = −2r + 3M

r2
√

1 − 2M
r

(15)

depending on r ′ only implicitly. Now substitute for the heat kernel the following
expression

G = G̃Y (�)Y ∗(�′)e
1
2

∫
gdr ′

(16)

where Y (�) is a spherical harmonic, in order to obtain[
∂2

t ′ − ∂2
r ′ − 1

2
∂r ′ g + 1

4
g2 − l(l + 1)

r2
+ m2 + ξ R

]
G̃ = −∂σ G̃ (17)

and continue by substituting

G̃(t ′, r ′, t̃ ′, r̃ ′; σ ) = G2d
0 (t ′, r ′, t̃ ′, r̃ ′; σ )eT ≡ G2d

0 (t ′, r ′, t̃ ′, r̃ ′; σ )e
∑∞

n=0 τn (t ′,r ′)σ n

(18)
where G2d

0 (t ′, r ′) is the flat heat kernel in two dimensions, solving the equation(
∂2

t ′ − ∂2
r ′
)
G2d

0 (t ′, r ′; σ ) = −∂σ G2d
0 (t ′, r ′, σ ) (19)

subject to the boundary condition G2d
0 (x , x̃ , 0) = δ(�(x , x̃)). This gives the fol-

lowing equation for T ;

∂2
t ′ T + (∂t ′ T )2 − ∂2

r ′ T − (∂r ′ T )2 − 1

2
∂r ′ g + 1

4
g2 − l(l + 1)

r2
+ m2 + ξ R = −∂σ T

(20)
The boundary condition determines the zeroth Taylor coefficient of T as

τ0 = −1

2

∫
gdr ′ (21)
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the equation for T yields the next coefficient as

τ1 = −
[
−∂2

r ′τ0 − (∂r ′τ0)2 − 1

2
∂r ′ g + 1

4
g2 − l(l + 1)

r2
+ m2 + ξ R

]

= l(l + 1)

r2
− m2 + ξ R ≈ l(l + 1)

r2
(22)

where m2 (m is the mass of the particle as measured in Planck units) can be
neglected, except perhaps for r → ∞ where it will cut of the integral in which it
occurs, cf. Eqs. (27) and (28). Inserting the Taylor series for T into equation gives
a recursion formula for subsequent coefficients;

τn+1 = 1

n + 1

[
∂2

r ′τn +
n∑

n′=o

∂r ′τn′∂r ′τn−n′

]
n ≥ 2 (23)

thus giving the following coefficient (∂r ′ =
√

1 − 2m
r ∂r );

τ2 = 1

2

[
∂2

r ′τ1 − g∂r ′τ1
]

= 1

2

(
1 − 2M

r

)
∂2

r τ1 + r − M

r2
∂rτ1

= 1

2

(
1 − 2M

r

) [
6l(l + 1)

r4
− ξ∂2

r R

]
+ r − M

r2

[
−2l(l + 1)

r3
− ξ∂r R

]

= r−4

(
1 − 4

M

r

)
l(l + 1) (24)

and the next one

τ3 = 1

3

[(
1 − 2M

r

)
∂2

r τ2 − g

√
1 − 2M

r
∂rτ2 +

(
1 − 2M

r

)
(∂rτ1)2

)

≈ 4

3
r−6

(
1 − 2M

r

)
l2(l + 1)2 (25)

and so forth. This is the only coefficients that we shall need explicitly. Also,
the part of τ3 that belongs to 2 loop order contributions has been omitted in the
approximation of Eq. (16). That the omitted part is of higher order is most easily
seen by restoring the ξ R term in τ1 before calculating τ2, τ3 and noting that one
then gets terms of the form ∂2n

r /Rn−1 with n larger and larger. By omitting these
higher-order contributions one thus implicitly assumes the background to be slowly
varying (as compared to its strength). Also, one should probably not venture beyond
1 loop order within the given framework, cf. Eq. (27) later, because continued
differentiations of the r−2 term of τ1 will produce ever larger coefficients.
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The effective action of the real scalar field is given by Eqs. (4) and (5);

	scalar = 1

2

∑
lm

∫ √
gd4x

d

ds

∣∣∣∣
s=0

∫ ∞

0
dσ

σ s−1

	(s)
G (26)

We are interested in the Casimir energy density and thus the effective Lagrangian,
so averaging over angles gives

Leff(r ) = 1

4πr2

∑
lm

1

2

∫
d�r2 d

ds

∣∣∣∣
s=0

∫ ∞

0

σ s−1

	(s)
G(x , x̃ ; σ )

=
∑
lm

1

8π

d

ds

∣∣∣∣
s=0

∫ ∞

0
dσ

σ s−1

	(s)

∫
d�Y (�)Y ∗(�′)e

1
2

∫
gdr ′

G(2d)
0 (t ′, r ′)eT

=
∑

l

1

8π

d

ds

∣∣∣∣
s=0

∫ ∞

0
dσ

σ s−1

	(s)

2l + 1

4π

1

4πσ
e− �2(x ,x)

4σ exp

(∑
n=1

τnσ
n

)

≈
∑

l

2l + 1

2(4π )3

d

ds

∣∣∣∣
s=0

∫ ∞

0
dσ

σ s−2

	(s)
eτ1σ (1 + τ2σ

2 + τ3σ
3

+ · · · + τnσ
n + · · ·)

=
∑

l

2l + 1

2(4π )3

[
τ1 − τ1 ln(−τ1) − τ2

τ1
+ τ3

(−τ1)2

+ · · ·
∞∑

n=4

τn

(−τ1)n−1
(n − 2)!

]

≈
∑

l

2l + 1

2(4π )3

[
τ1 − τ1 ln(−τ1) − τ2

τ1
+ τ3

(−τ1)3

]
(27)

where only the lowest-order correction to the contribution of the smooth classical
background has been kept (i.e. tree level + 1 loop order, essentially). Note the
occurrence of (n − 2)! in the continued expansion which make further expansion
uninteresting (and probably un-sound) because the coefficients are so complicated
that regularising the sum seems impossible. However, the framework of quantum
field theory in curved space should be sound enough to one loop order, and we
will have to be content with that:

Explicitly, for the Schwarzschild metric, collecting terms with similar depen-
dence on l and noting that ξ R = 0 everywhere except at the origin, this becomes

Leff(r ) =
∞∑

l=0

[(
2(1 − 2M

r )

3(4π )3r2

)
l0

(
− ln(r )

(4π )3r2
− 1

2(4π )3r2
+ 4(1 − 2M

r )

3(4π )3r2

)
l
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+
(

− 3 ln(r )

(4π )3r2
− 3

2(4π )3r2

)
l2

+
(

− 2 ln(r )

(4π )3r2
− 1

(4π )3r2

)
l3

+
(

3(1 − 2M
r )

2(4π )3r2
− r − M

(4π )3r3

)
l

l2 + l

+
(

9(1 − 2M
r )

2(4π )3r2
− 3(r − M)

(4π )3r3

)
l2

l2 + l

+
(

3(1 − 2M
r )

(4π )3r2
− 2(r − M)

(4π )3r3

)
l3

l2 + l

+
(

1

2(4π )3r2

)
l ln(−l2 − l)

+
(

3

2(4π )3r2

)
l2 ln(−l2 − l)

+
(

1

(4π )3r2

)
l3 ln(−l2 − l)

]
(28)

The first three terms easily renormalise as( ∑
l

l−s

)
reg

= ζ (s) (29)

where ζ (s) is the Riemanian zeta-function with the relevant values being ζ (0) =
− 1

2 , ζ (−1) = −1/12, ζ (−2) = −0 and ζ (−3) = 1/120 (Gradstheyn and Ryzhik,
1980). The rest of the terms are renormalised using the modified Abel-Plana for-
mula (Grib et al., 1994) (taking out the l = 0 term before use),

reg
∞∑

n=1

F(n) = −1

2
F(0) + i

∫ ∞

0

F(i t) − F(−i t)

e(2π t)−1
dt (30)

and, where necessary, replacing infinite values by principal ones (Blau et al.,
1988) (and using ln(−l2 − l) = ln(−1) + ln(l) + ln(l + 1) where ln(−1) = iπ ).
The renormalised free energy thus becomes

Leff(r ) =
[
−1

2

(
2

(
1 − 2M

r

)
3(4π )3r2

)
− 1

12

(
− ln(r )

(4π )3r2
− 1

2(4π )3r2
+ 4

(
1 − 2M

r

)
3(4π )3r2

)]

+ 1

120

(
− 2 ln(r )

(4π )3r2
− 1

(4π )3r2

)
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+ (0.5 − i0, 0772)

(
3

(
1 − 2M

r

)
2(4π )3r2

− r − M

(4π )3r3

)

+ 0.0161

(
9

(
1 − 2M

r

)
2(4π )3r2

− 3(r − M)

(4π )3r3

)

+ i0, 000612

(
3

(
1 − 2M

r

)
(4π )3r2

− 2(r − M)

(4π )3r3

)

+ (−0.0881 − i0.262)

(
1

2(4π )3r2

)

+ (−0.0230)

(
3

2(4π )3r2

)

+ (−0.00538 + i0.0305)

(
1

(4π )3r2

)]

= 1

15(4π )3

ln(r )

r2
+ −0.224 + i0, 211

(4π )3

1

r2
+ 0.207 + i0.179

(4π )3

M

r3

≡ α
ln(r )

r2
+ β

1

r2
+ η

M

r3
+ · · · + constant

Mn

rn+2
+ · · · (31)

to (a little above) one loop order. Proceed to determine the energy–momentum
tensor by

Tµν = δ	

δgµν
= δ	

δM

δM

δgµν
= ∂	

∂ M

∂ M

∂gµν
=

(
η

1

r3
+ 2γ

M

r4

) (
∂gµν

∂ M

)−1

(32)

Here

∂gµν

∂ M
=




2

r
(
1 − 2M

r

)2 0 0 0

0
2

r
0 0

0 0 0 0

0 0 0 0




(33)

is not invertible but due to the fact that space does not curve in angular directions we
invert the ‘invertible block’ (i.e. symmetry forbids a pressure in angular directions)
and put equal to zero the (2,2) and (3,3) components in the inverted matrix thus
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obtaining for the following Casimir contribution to the energy–momentum tensor

Tµν =
(

η
1

r2
+ · · · + n · constant

Mn−1

rn+1

)



1

2

(
1 − 2M

r

)2

0 0 0

0
1

2
0 0

0 0 0 0

0 0 0 0



(34)

the T00 component is shown in Fig. 1. Because this result forms the basis for the
analogous calculation for fermions notes pertaining to the earlier result will be
postponed till the end of next section.

3. THE ZERO-POINT ENERGY OF A SPIN 1/2 FERMION FIELD FOR
THE SCHWARZSCHILD METRIC

The zeta-function of an operator A is related to the zeta-function of its square
by

ζA2 (s) =
∑

λ

(λ2)−s = ζA(2s) (35)

Fig. 1. Real (lower curve) and imaginary (upper curve) parts of T scalar
00 from just within the

Schwarzschild radius (r = 1.5M) to r = 10M . Within the Schwarzschild radius T scalar
00 diverges

as r−2.
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where λ is the eigenvalues of the operator. The Dirac operator of a fermion field
coupled to a gauge field is

Dm = eµ
m

(
∂µ + i

2
ωpq

µ (x)X pq + ig Aa
µ(x)Ta

)
(36)

(which is both gauge and Lorentz covariant). Here eµ
m is the vierbein (the local

coordinate frame of a freely falling observer), ωpq
µ (x) is the spin connection being

the gravitational analogue of the gauge field Aa
µ(x) and X pq the corresponding

Lorentz group (SO(3, 1)) generators analogous to the gauge group generators Ta .
Greek indices refer to curvilinear coordinates while small latin indices from the
last half of the alphabet refer to local Lorentz coordinates. Small latin letters from
the beginning of the alphabet will be used to denote gauge indices.

Representing the SO (3,1) generators in terms of the sigma matrices, X pq ≡
σpq = i

4 [γp, γq ], one obtains, for the derivative squared;

D2 = (
� + ξ f R + m2 + gηpq Aa

p Ab
q Ta Tb

) · 14 + 2gσ pq Fa
pq Ta + G(A) (37)

where 14 is the four-dimensional unit matrix and where

G(A) = 0 (38)

is an allowed gauge (Bormann and Antonsen, 1995).
It is possible, in principle, to include the gauge coupling using the meanfield

approach introduced briefly in the next section (i.e. replacing the gauge field with its
mean value in the Dirac operator), using either the earlier relationship (Eqs. (37)
and (38)) or the relation of the fermion heat kernel to the scalar one. Here, for
simplicity, we will only consider the case 〈Aa

m〉 = 0, i.e. non-interacting fermions
(〈Aa

m〉 �= 0 is a higher-order effect). One can then proceed by doing the same
calculations as in the scalar case, leading to

Leff(r ) = −1

2

1

4πr2

d

ds
|s=0ζ∇(s)

≈ −Tr
∑

l

2l + 1

2(4π )3

d

ds

∣∣∣∣∣
s=0

∫ ∞

0

σ s−2

	(s)
eτ1σ (1 + τ2σ

2 + τ3σ
3)14

= −
∑

l

2l + 1

2(4π )3
Tr

[
τ1 − τ1ln(τ1) − τ2

τ1
+ τ3

τ1

]

= −4Lscalar
eff � + ξ f R (r ) (39)

where in obtaining the last line we have taken note of Eq. (36), giving a factor 1/2,
the trace over spinor indices gives a factor 4 and the fact that we are considering
a complex Grassman field gives a factor −2, cf. Eq. (4). As ξ f R = 0 this quantity
has already been calculated in the previous section and the energy–momentum
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Fig. 2. Real (upper curve) and imaginary (lower curve) parts of T fermion
00 from just within the

Schwarzschild radius (r = 1.5M) to r = 10M . Within the Schwarzschild radius T fermion
00 diverges

as −r−2.

tensor likewise becomes

T Dirac
µν = −2

(
η

1

r2
+ · · · + n · constant

Mn

rn+2

)



1

2

(
1 − 2M

r

)2

0 0 0

0
1

2
0 0

0 0 0 0

0 0 0 0




(40)
with η = (−0.224 + i0.211)/(4π )3. A plot of T Dirac

00 is given in Fig. 2.
As already mentioned, the earlier expansion of the contribution of the zero-

point fluctuations to the energy–momentum tensor is readily interpretated as equiv-
alent to a loop-expansion, and one now sees that at the tree level one gets no con-
tribution (its contribution disappears when varying the effective Lagrangian with
respect to the metric). This is no surprise, partly because this is the classical limit,
partly because a vertex is a local quantity and so is not affected by propagating
virtual particles.

The 1 loop level contributes a term (∝ (M0/r2)(l − 2M
r )2) that is non-zero as

M goes to zero indicating a topological origin. 2 loop and higher order contributes
mass-dependent terms that probably cannot be determined reliably by the earlier
method. But as far as these terms can be taken as an indication of the higher-order
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contributions, note that these become more and more peaked at the origin, the
higher the loop order.

When one does not take into account the contribution of the zero-point fluctu-
ations to the energy–momentum tensor it is identically zero except at the origin (the
energy–momentum tensor is Tµν = Mδ(r), even if the Newtonian potential is ∝
M/r2). This no longer is the case when quantum fluctuations are included: For large
distances, the Casimir contribution behaves as r−2 thus, if un-screened, adding up
to an infinite contribution (ignoring higher-order terms). Then of course, back-
reaction on the metric was not included – some kind of equilibrium might exist.

Also the Casimir energy contribution is complex. One may be tempted to
consider only the real value of this contribution, but as we shall see when treating
gauge bosons, the question of whether the energy–momentum tensor is complex
may be linked to the topology (inside vs. outside the Schwarzschild radius) as well
as to the size of gauge coupling constants and Casimir mean fields, making such
an approach dubious.

One is better off considering energy complex and then interpreting the imagi-
nary part of the energy as signaling particle creation.5 One more thing to note about
the earlier explanation, namely that within the present framework one unfortunately
cannot have confidence in terms of higher order than indicated earlier. This is an-
noying as terms of the type Mn/rn+2 are potentially interesting for large masses
and small distances giving what might be a major contribution to the energy–
momentum tensor (including a large radial pressure that might be positive or neg-
ative depending on the coefficients in the earlier expansion), a contribution that
should have been incorporated when one determined the metric in the first place (a
sort of back-reaction, perhaps having the mass contribution bootstrap). The pres-
sure contribution might be interesting if one considers the Schwarzschild metric
an approximation to a general mass because in the early universe mass is in a sense
within its own Schwarzschild radius. (It is entirely possible that T Casimir

µν ≈ Tµν for
r → 0, in a full theory.)

As noted earlier, an interesting fact is that if one lets the mass generating
the space–time go to zero one still has a (complex) contribution to the energy–
momentum tensor which we will have to ascribe to the difference in topology to the
Minkowski space. The size of this contribution is given in Planck units (multiply
by FPlanck ∼ 1056 N to get the size in SI units), the size indicating that topology
changes do not come easy. They should occur, though, at scales somewhat below
the Planck one.

When discussing implications of the Casimir contribution to the energy–
momentum tensor, we should include the full standard model. However, to calcu-
late the spin 1 contribution we need the Lorentz condition which is at odds with
the gauge condition (39). This problem probably could be migrated to second loop
level. But this would enhance the complexity of the spin 1 calculation which is

5 To be precise, the number of particles created is ∝ exp(−2Im(Leff)) (Grib et al., 1994).
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notably more complicated than the preceding cases, so proceed by considering just
a pure Yang–Mills theory.

4. THE ZERO-POINT ENERGY OF A SPIN 1 GAUGE BOSON FIELD
FOR THE SCHWARZSCHILD METRIC

For gauge theory containing fermions coupled to a non-Abelian gauge field
one has the following generating functional

Z =
∫

D Aµ

∫
Dψ Dψ̄e− 1

4 ∫ Fa
mn Fmn

a dxµ+i ∫ ψ̄γ m Dmψdxµ

(41)

where the field strength tensor is given by (Ramond, 1989)

Fa
mn = eµ

meν
n

(
∂µ Aa

ν + ∂ν Aa
µig f a

bc Ab
µ Ac

ν

)
(42)

and the gauge invariant and Lorentz covariant derivative is given by Eq. (36).
As the fermion part of the action contains reference to the gauge field one a

priori cannot carry out the two integrations independently. To remedy this, make a
mean field approximation to Aµ in the fermionic integral, as well as in the higher-
order terms of the bosonic integral (see later) and proceed by considering the
bosonic and the fermionic parts independently. The fermionic case was discussed
in the previous section so consider the bosonic part of the generating functional,

Z =
∫

D Aµe− 1
4 ∫ Fa

mn Fmn
a dxµ

(43)

which can (using commutation relations, suitable normalisation and the Lorentz
condition) be given the form

Z =∫
DAµe−∫

d4x Ab
m

g2

4 [−δa
b δm

n ∂p∂
p+δa

b (∂nemµ−∂m eµ
n )ep

µ∂p+g f b
a

c(∂n Amc−∂m Ac
n )+ 1

2 δm
n g2 febc f a

dc Ae
p Apd ]An

a

(44)

and, in order to perform this path integral, make it Gaussian by choosing the
following mean field approximation:

Z =∫
DAµe− ∫

d4x Ab
m

g2

4 [−δa
b δm

n ∂p∂
p+δa

b (∂n emµ−∂m eµ
n )ep

µ∂p+〈g f a
b c(∂nm Amc−∂m Ac

n )〉+〈 1
2 δm

n g2 febc f a
d c Ae

p Apd 〉]An
a

≡
∫

DAµe− ∫
d4x Ab

m Mam
bn An

a

= (det Mam
bn )−

1
2 (45)

To determine this path integral, once again use the heat kernel method, this time
for the differential operator of the earlier path integral. Thus, consider the equation
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g2

4

[
δa

bδm
r ∂p∂

p − ∂a
b

(
∂r emµ − ∂meµ

r

)
ep
µ∂p − 〈

g f a
b c

(
∂r Amc − ∂m Ac

r

)〉

−
〈

1

2
δm

r g2 febc f a
d c Ae

p Apd

〉]
Gr (a)

n(b)(x , x̃ , σ ) = −∂σ Gm(a)
n(b) (x , x̃ ; σ ) (46)

or, in short hand notation

g2

4

[
δa

bδm
k ∂p∂

p − δa
b

(
∂kemµ − ∂meµ

k

)
ep
µ∂p − f m(a)

k(b) (〈A〉)]Gk(a)
n(b)(x , x̃ ; σ )

= −∂σ Gm(a)
n(b) (x , x̃ ; σ ) (47)

The first-order term is eliminated by the substitution

G = G̃e
1
2

∫ (
∂nemµ−∂m eµ

n

)
ep
µdx p (48)

whereupon G̃ is written as

G̃m(a)
n(b) (x , x̃ ; σ ) = Go

(
x , x̃ ;

g2

4
σ

) (
eT (x , x̃σ )

)(a)m
n(b) (49)

where Go denotes the heat-kernel of �0 = ∂p∂
p and T is some matrix (T )m(a)

n(b =
T m(a)

n(b) which we expand as

T m(a)
n(b) (x , σ ) =

∞∑
ν=0

τ
(ν)m(a)
n(b) (x)σ ν (50)

Due to the boundary condition, Gm(a)
n(b) (x , x̃ ; 0) = δa

bδm
n δ(x , x̃), on the heat kernel;

Gm(a)
n(b) (x , x̃ ; σ ) = Go(x , x̃ ; σ )

(
eT (x , x̃σ )

)(a)m
n(b) e

1
2

∫
(∂nemµ−∂m eµ

n )ep
µdx p (51)

the first coefficient of the expansion becomes

∂ pτ
(0)m(a)
n(b) = −1

2
δa

b

(
∂nemµ − ∂meµ

n

)
ep
µ (52)

Note in passing that the right hand side of this equation is proportional to the
structure coefficent of the Lie algebra of the derivatives, ∂µ, a measure of the
space–time curvature (see, e.g. Ramond, 1989).

Utilising that along the diagonal x = x̃ the flat space heat kernel is constant,
making its derivatives vanish, and Eqs. (47) and (51), the next coefficient becomes

τ
(1)m(a)
n(b) =

(
g2

4

)1 [
δb

a∂p
[(

∂nemµ − ∂meµ
n

)
ep
µ

]

− 1

2
δa

b

[(
∂kemµ − ∂meµ

k

)
ep
µ

][(
∂nekν − ∂keν

n

)
epν

] + f m(a)
n(b) (〈A〉)

]
(53)
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Also one derives a recursion relation for the coefficients τ
(ν)m(a)
n(b)

g2

4

[
�0τ

(ν)m(a)
n(a) +

ν∑
ν ′=0

(
∂pτ

(ν−ν ′)m(a)
k(c)

(
∂ pτ

(ν ′)k(c)
n(b)

)] = −(ν + 1)τ (ν)m(a)
n(b) ; ν ≥ 2

(54)
and subsequently the next coefficient is

τ
(2)m(a)
n(b) ≈

(
g2

4

)2 [
−1

2
�0 f m(a)

n(b) (〈A〉) − 1

2
∂p f m(a)

k(b) (〈A〉) · (
∂nekµ − ∂keµ

n

)
ep
µ

− 1

2

(
∂kemµ − ∂meµ

k

)
ep
µ · ∂p f k(a)

n(b) (〈A〉)
]

(55)

The last coefficient that we list is

τ3 ≈
(

g2

4

)3 (
∂p f m

k

)(
∂ p f k

n

)
(56)

For computational reasons we shall only work to this order and furthermore have
kept only the terms (of τ2 and τ3) that seem most important when doing simulations,
i.e. the most important pure curvature term, the most important pure gauge field
terms and the most important gauge field-curvature coupling terms.6

Thus, use for the heat kernel the expression

Gm(a)
n(b) (x , x , σ ) = Go(x , x ; σ )

(
eτ0+τ1σ

1+τ2σ
2+τ3σ

3)m(a)
n(b) (57)

to find the effective action:

	 = −(
ln

(
det

(
M (a)m

(b)n

))−1/2 = 1

2

d

ds

∣∣∣∣
s=0

ζ (s)

≈ 1

2

∑
m,l

d

ds

∣∣∣∣∣
s=0

∫ √
gd4x

∫ ∞

0
dσ (58)

σ s−1

	(s)

1(
4π

g2

4 σ
)2 eτ1σ+τ2σ

2+τ3σ
3+···+τnσ

n+···Ylm(�)Y ∗
lm(�′)

≈ 1

2

∑
m,l

d

ds

∣∣∣∣∣
s=0

∫ √
gd4x

∫ ∞

0
dσ (59)

Tr
σ s−1

	(s)

1(
4π

g2

4 σ
)2 eτ1σ (1 + τ2σ

2 + τ3σ
3 + · · · + τnσ

n + · · ·)Ylm(�)Y ∗
lm(�′)

6 Note, however, that by discarding terms that are essentially higher and higher-order derivatives of the
curvature one might lose a large contribution when close to singularities.
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where the trace is both over Lorentz and gauge indices. From this one finds its
density, the effective Lagrangian to be

Leff(r ) ≈ Tr
1

2

(
g2

4

)−2 ∑
l

d

ds

∣∣∣∣
s=0

42

4πr2

2l + 1

4π

×
∫ ∞

0
dσ

σ s−1

	(s)

1

(4πσ )2
eτ1σ (1 + τ2σ

2 + τ3σ
3 + · · · + τnσ

n + · · ·)

= Tr

(
g2

4

)−2
1

(4π )4

∑
l

(2l + 1)

[
3

4
τ 2

1 − 1

2
τ 2

1 ln(−τ1) − ln(−τ1)τ2 − τ3

τ1

+ · · · + (n − 3)!
τn

τ n−2
1

+ · · ·
]

(60)

To perform the integration over the angular coordinates, we utilised the fact that
the heat kernel formally solves a spherically symmetric differential equation and
thus must be spherically symmetric itself. The only angular dependenies thus
are those of the spherical harmonics which are taken care of using the relation
�m,l

∫
d�Ylm(�)Y ∗

lm(�) = 2l+1
4π

. Note that, in the approximation earlier, each of
the τn will have an angular dependency (see later). If, however, we were able
to explicitly perform the sum (50) this angular dependency would cancel out.
In this case performing the angular part of the integral as done earlier would
be correct. For this reason we preferred this procedure to one of first inserting
the τn , their angular dependencies included, and then performing the integration.
To explicitly determine the coefficients, τ1, τ2, and τ3, write the Schwarzschild
metric as

ds2 = h(r )dt2 − 1

h(r )
dr2 − r2d� (61)

with

h(r ) = 1 − 2M

τ
(62)

where M denotes the mass of the object generating the gravitational field. The
vierbeins then read

ea
0 =




√
h

0

0

0


 ea

1 =




0

h−1/2

0

0


 ea

2 =




0

0

r

0


 ea

3 =




h

0

0

r sin θ



(63)
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Thus, the first coefficient explicitly becomes

τ1
m
n =

(
g2

4

)1 (
ηmm ′

∂µ

(
eγ

n ∂γ eµ

m ′ − eν
m ′∂νeµ

n

)
+ ηmm ′(

eγ
n ∂γ eµ

m ′ − eν
m ′∂νeµ

n

)
eδ

p∂δep
µ

− 1

2
ηkk ′

ηmm ′
gµν

(
eτ ∂τ eµ

m ′ − eτ
m ′∂τ eµ

k

)(
eδ

n∂δeν
k − eδ

k ′∂δeν
k

)
+ f m

n (〈A〉)

=
(

g2

4

)1



−1

2




h2(∂r h−1/2)2 0 0 0

0 h2(∂r h−1/2)2 + 2
h

r2

h1/2 cot θ

r2
0

0
h1/2 cot θ

r2

h + cot θ

r2
0

0 0 0
h + cot θ

r2




+ f m
n (〈A〉)




≈
(

g2

4

)1



−1

2




M2

r2(r2 − 2Mr )
0 0 0

0
M2

r2(r2 − 2Mr )
+ 2

1 − 2M
r

r2
0 0

0 0
1 − 2M

r

r2
0

0 0 0
1 − 2M

r

r2




+ f m
n (〈A〉)




(64)

and the next one;

τ2
n
m =

(
g2

4

)2 (
−1

2
ηabeµ

a

(
∂µeν

b

)
∂ν f m

n − 1

2
gµν∂µ∂ν f m

n

− 1

2
ηkk ′(

∂µ f m
k

)(
eν

n∂νeµ

k ′ − ην
k ′∂νeµ

n

) − 1

2
ηmm ′(

eν
k ∂νeµ

m ′ − eν
m ′∂νeµ

k

)(
∂µ f k

n

))

=
(

g2

4

)2
(

− 1

2
(
1 − 2m

r

)∂2
t f m

n + 1

2

(
1 − 2m

r

)
∂2

r f m
n + m

2r2
∂r f m

n

+ 1

2r2
∂2
θ f m

n + 1

2r2 sin2 θ
∂2
φ f m

n

− M

r2
(
1 − 2M

r

)



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 ∂t f k

n −
√

1 − 2M
r

2r2




0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0


 ∂θ f k

n
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− 1

2r2 sin θ




0 0 0 0

0 0 0 −
√

1 − 2M

r
0 0 0 − cot θ

0

√
1 − 2M

r
− cot θ 0




∂φ f k
n

− M

r2
(
1 − 2M

r

)∂t f m
k




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 −

√
1 − 2M

r

2r2
∂θ f m

k




0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0




− 1

2r2 sin θ
∂φ f m

k




0 0 0 0

0 0 0 −
√

1 − 2M

r
0 0 0 − cot θ

0

√
1 − 2M

r
cot θ 0







≈
(

g2

4

)2 (
1

2

(
1 − 2M

r

)
∂2

r f m
n + M

2r2
∂r f m

n

)
(65)

and the last one that will be needed

τ3 ≈
(

g2

4

)3 (
∂p f m

k

)(
∂ p f k

n

) =
(

g2

4

)3

gµν
(
∂µ f m

k

)(
∂ν f k

n

)

=
(

g2

4

)3 (
−

(
1 − 2M

r

))
(∂r f )2m

n (66)

where the final expression for the coefficients utilize that, because of the symmetry
of the problem, the meanfield can only depend on the radial coordinate, thus
f m
n = f m

n (r ). In a general gauge theory, the function f (a)m
(b)n is given by

f (a)m
(b)n = g fb

a
cη

mm′(eµ
n ∂µ〈Am ′ 〉1c − eµ

m ′∂µ〉A(c)
n 〉1c

)
+ δm

n g2 febc f ac
d δed〈Ap Aq〉ηpq (67)

where the fact that one does not a priori expect the meanfield to be colour asym-
metric has been used (also this is verified later, to lowest order). As we shall only
work to the lowest order, the first term will not contribute to the path integral (46)
(otherwise we would break colour invariance, which on experimental grounds,
one should not do lightly). The second term evaluates to, in the case of a SU(N)
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theory,

f (a)m
(b)n � δm

n g2〈Ap Aq〉ηpqC(N ) (68)

where C(N ) denotes the Casimir operator of the group.
The meanfield, used to determine f m

n in in the earlier expression (through
Eqs. (47) and (48)), is, by definition,7

〈
Aa

m(x)Ab
n(x̃)

〉 ≡
∫

Aa
m(x)Ab

n(x̃)ei SDA∫
ei SDA

(69)

where S denotes the appropriate action. This meanfield has been determined in
(Bormann and Antonsen, 1995). To lowest order the result is〈

Aa
m(x)Ab

n(x)
〉
reg = δabτ1mn(γ − 1) (70)

This result can then in turn be made the starting point of an iteration using the
full action (with non-zero mean field terms) to obtain a better approximation to
the meanfield. However, I will just consider the lowest approximation, which from
Eqs. (63) and (69) gives the following meanfield

A(a)
m =

√
γ − 1

2r




√
− M2

r2 − 2Mr√
M2

r2 − 2Mr
+ 2

(
1 − 2M

r

)
√

1 − 2M

r
+ cot(θ )√

1 − 2M

r
+ cot(θ )




≈
√

γ − 1

2r




√
− M2

r2 − 2Mr√
M2

r2 − 2Mr
+ 2

(
1 − 2M

r

)
√

1 − 2M

r√
1 − 2M

r




(71)

7 Where ever the mean value of a any odd power of the gauge fields occur, we probably should substitute√
A2 for A – keeping in mind though, that path integrating over A will kill any odd power of A (if the

exponential of Eq. (46) was expanded in powers, which in turn was the reason for eliminating part of
f m
n earlier).
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where the θ -dependence is an artefact due to the truncation of the series (50) and
thus should be ignored in the calculations.8

Explicitly, from Eq. (68), one has

f (a)m
(b)n = δm

n g2δ
p
q ′C(N )(γ − 1)τ1

(a)q ′
(b)p

= δm
n g2C(N )(γ − 1)Tr|〈A〉=0τ1

= −1

2
δm

n g2C(N )(γ − 1)

[
2M2

r2(r2 − 2Mr )
+ 4

(
1 − 2M

r

)
r2

]
(72)

and so τ1 explicitly becomes

τ1 = −1

2

(
g2

4

)




M2

r2(r2 − 2Mr )
0 0 0

0
M2

r2(r2 − 2Mr )
+ 2

1 − 2M
r

r2
0 0

0 0
1 − 2M

r

r2
0

0 0 0
1 − 2M

r

r2




−
(

g2

4

)
(γ − 1)g2C(N )

[
M2

(r2 − 2Mr )r2
+ 2

(
1 − 2M

r

)
r2

] 


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 (73)

while τ2 becomes

τ2 =
(

g2

4

)2 [
−4

M2(2r − 3M)(r − 4M)

r6(r − 2M)2
+ 4

M2

r5(r − 2M)
(74)

− 12
(r − 4M)(r − 2M)

r6
+ M3(2r − 3M)

r6(r − 2M)2 + 2 M(r−3M)
r6

]
(γ − 1)g2C(N )δm

n

and τ3 becomes

τ3 = −
(

g2

4

)3 [(
1 − 2M

r

)
(γ − 1)2g4C2(N )

]

8 The series (50) is a factor in the (formal) solution to an spherically symmetric equation and thus the
sum of the (infinitely many) contributions must be angle independent, even if individual terms, due
to the angular dependancy of the vierbeins, has an angular dependancy.
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×
[
−2

M2(2r − 3M)

r4(r − 2M)2
− 4

r − 3M

r4

]2

δm
n (75)

The renormalised effective Lagrangian is found by performing the summation∑∞
l=0(2l + 1) = 1 + ∑

l=1(2l + 1) = 1 + 2ζ (−1) + ζ (0) = 1 + 2(− 1
2) + (− 1

2 ) =
1
3 , and adding the Ghost contribution, −2Lscalar,ren

eff , giving

Lren
eff = Tr

(
g2

4

)−2
1

3(4π )4

[
3

4
τ 2

1 − 1

2
τ 2

1 ln(−τ1) − ln(−τ1)τ2 − τ−1
1 τ3

]

− 2Lscalar,ren
eff (76)

which is pretty straight forward to use because τ1 is diagonal. However, the ex-
pression one gets is rather complicated and so only plots are presented. The plots
were made using Matematica (Wolfram Research, 1997). The behaviour of the
effective Lagrangian has been cut off towards the singularity where it diverges.

Figures 3a and 3b show large effects at the singularity and at the Schwarzschild
radius. It is interesting that even there, where the gravitational field is very strong,
the results show a strong dependency on the size of the gauge coupling constant.
Also interesting is the fact that, as regards the imaginary part of the effective
Lagrangian, for the gauge coupling constant being large, one gets a prominent
contribution at longer distances. With what is probably a language abuse, one
could speak of warping of gravitational and gauge field effects (for strong fields).

Because the effects are largest for large fields, drowning smaller ones, inter-
esting effects do appear as one zooms in to have a higher-resolution view:

Focusing on the small g region, g ∈ [0.01, 1.0], and also ignoring what goes on
close to the Schwarzschild radius one sees some rather surprising local variations
in the real part of the effective Lagrangian, a kind of resonances in g and r , a
much more complicated behaviour than one would anticipate. These are evident
both inside the Schwarzschild radius (Fig. 3c where r/M ∈ [0.1, 1.9]) and outside
(Fig. 3e with r/M ∈ [2.1, 6.0]). Actually, there are a few very minor resonances in
the imaginary part as well, as can be seen from the plots of exp(−2Im(Leff)) (the
particle creation rate) depicted in Figs. 4a and 4b. Again, the energy–momentum
tensor is determined by

Tµν = δ	eff

δM

δM

δgµν
(77)

where δgµν

δM is given by Eq. (34). Plots of the energy–momentum tensor are given in
Fig. 5, where again, the plots have been cut off towards the singularity where they
diverge. The behaviour of course closely mimics that of the effective Lagrangian,
except that the resonances stand out even further, dominating the high resolu-
tion plots of Im(T00), Figs. 5c and 5e. Note, that the dependency of the effective
Lagrangian on the coupling constant becomes more complicated as one goes to
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Fig. 3. The renormalised effective Lagrangian for a SU(3) field. Figures (a) and (b)
show the real and imaginary parts, respectively, of Lren

eff for r ∈ [0.2M, 8M] and g ∈
[0.01, 10]. Figures (c)–(f) zoom at the behaviour for small coupling constants, g ∈
[0.01, 1.0]. Figures (c) and (d) show the real and imaginary parts of the effective
Lagrangian within Schwarzschild radius, r/M ∈ [0.1, 1.9]. Figures (e) and (f) show
the real and imaginary parts of the effective Lagrangian outside the Schwarzschild
radius, r/M ∈ [2.1, 6.0].
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Fig. 3. Continued.
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Fig. 3. Continued.
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Fig. 4. The particle creation rate, exp(—2Im(Leff)), for a SU(3) field for (a) r/M ∈ [0.2,
10.0] and g ∈ [0.01, 10.0] and; (b) r/M ∈ [0.2, 4.0] and g ∈ [0.01, 1.0] (zooming on the
small coupling region).



1994 Bormann and Antonsen

Fig. 5. The renormalised effective energy–momentum tensor for a SU(3) field. Figures
(a) and (b) show the real respectively imaginary parts of 〈T00〉Casimir for r ∈ [0.2M, 8M]
and g ∈ [0.01, 10]. Figures (c)–(f) zoom at the behaviour for small coupling constants,
g ∈ [0.01, 1.0]. Figures (c) and (d) show the real and imaginary parts of T00 within
Schwarzschild radius, r/M ∈ [0.1, 1.9]. Figures (e) and (f) show the real and imaginary
parts of T00 outside the Schwarzschild radius, r/M ∈ [2.1, 6.0].
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Fig. 5. Continued.
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Fig. 5. Continued
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higher and higher order (as one includes more terms in the truncated series (50)),
leaving open the possibility that such resonances would totally dominate a fuller
picture than that explored in this paper, perhaps with profound consequences to
primordial black hole signatures.

In regard to the spectral signatures of primordial black holes it also should
be noted that, comparing the size of the imaginary part of the energy–momentum
tensor of fermions and scalars with that of the gauge field, one is lead to expect that
the contribution from gauge bosons will be dominant although, in a full model, the
coupling between fermions and gauge bosons probably would somewhat lessen
the difference.

Discussing phenomenology it also deserves to be mentioned that one has a
rather large radial pressure (the size of which is determined by what fields inhabits
space–time) that might be of importance to the dynamics of the very early universe
when matter is, in a sense, within its own Schwarzschild radius.

5. CONCLUSION

In this paper, effective Lagrangians as well as the part of the energy–
momentum tensor stemming from the zero-point fluctuations of the quantum mat-
ter fields were calculated for scalar fields, spin 1/2 fermions and spin 1 gauge
bosons, all quantum fields being free fields residing in a Schwarzschild geometry.
In the case of the spin 0 and the spin 1/2 fields, the calculations were very clean
and simple, the only approximation entering through the truncation of the series
(18), renormalisation being done against a local Minkowski background. For gauge
bosons, the calculations are essentially carried out along the same lines, however,
the explicit introduction of the vierbeins (local, freely falling coordinate frames)
introduces angular dependency of end results. This angular dependancy is due to
the truncation of the series (50) and is unlikely to have any deeper significance.
Furthermore, the angular-dependent contributions are minor ones and so the results
one get from throwing them away can still be seen as order of magnitude indicators
of the results one would get from a full calculation. And the results of the gauge
boson calculation are interesting indeed, showing the interplay of the gravitational
field and the gauge boson field (as signified by the gauge coupling constant) as
regards particle creation (the imaginary part of the effective Lagrangian) and also
showing that, especially the real part of the (zero-point energy contribution to the)
energy–momentum tensor was dominated by ‘resonances,’ again signifying the
interplay between gravitational and gauge boson field strengths.
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